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Abstract

A number of reasoning problems involving the
manipulation of temporal information can nat-
urally be viewed as implicitly inducing an or-
dering of potential local decisions involving
time (specifically. associated with durations or
orderings of events) on the basis of preferences.
For example. a pair of events might be con-
strained to occur in a certain order, and. in ad-
dition. it might be preferable that the delay be-
tween them be as large. or as small. as possible.
This paper explores problems in which a set
of temporal constraints is specified. where each
constrainy is associated with preference criteria
for making local decisions about the events in-
volved in the constraint. and a reasoner must
infer a complete solution to the problem such
that. to the extent possible, these local pref-
erences are met in the best way. A constraint
framework for reasoning about time is gener-
alized to allow for preferences over event dis-
tances and durations, and we study the com-
plexity of solving problems in the resulting for-
malism. It is shown that. while in general such
problems are NP-hard, some restrictions on the
shape of the preference functions, and on the
structure of the preference set, can be enforced
to achieve tractability. In these cases, a simple
generalization of a single-source shortest path
algorithm can be used to compute a globally
preferred solution in polynomial time.

1 Introduction and motivation

Several real world problems involving the manipulation
of temporal information in order to find an assignment
of times to a set of activities or events can naturally
be viewed as having preferences associated with local
temporal decisions, where by a local temporal decision
we mean one associated with how long a single activity
should last, when it should occur, or how it should be
ordered with respect to other activities. For example,
an antenna on an Earth Orbiting Satellite such as Land-
sat 7 must be slewed so that it is pointing at a ground

station i order fur recorded selence or telemetry data
to be downlinked to earth. Assume thar as part of the
daily Landsat 7 scheduling activity a window IV = {5 ¢]
is identified within which a slewing activity to one of the
ground stations for one of the antennae can begin, and
thus there are choices for assigning the start time for this
activity. Antenna slewing on Landsat 7 has been shown
to occasionally cause a slight vibration to the satellite,
which in turn might affect the quality of the image taken
by the scanning instrument if the scanner is in use during
slewing. Consequently. it is preferable for the slewing ac-
tivity not to overlap any scanning activity. although be-
cause the detrimental effect on image quality occurs only
intermittently. this disjointness is best not sxpressed as
a hard constraint. Thus if there are any start times ¢
within 1V such that no scanning activity occurs during
the slewing activity starting at ¢, then t is to be pre-
ferred. Of course. the cascading effects of the decision
to assign ¢t on rhe scheduling of other satellire activities
must be taken into account as well. For example, the
selection of ¢. rather than sonie earlier start time within
W might result in a smaller overall contact period be-
tween the ground sration and satellite. which in turn
niight limit the amount of data that can be downlinked
during this period. This may conflict with the prefer-
ence for attaining maximal contact times with ground
stations, if possible.

Reasoning simultaneously with hard temporal con-
straints and preferences, as illustrated in the example
just given, is the subject of this paper. The overall objec-
tive is to develop a system that will generate solutions to
temporal reasoning problems that are intuitively globally
preferred in the sense that the solutions simultaneously
meet, to the best extent possible, all the local preference
criteria expressed in the problem. Of course, local prefer-
ence criteria might conflict, as suggested in the example
just given, so an intelligent resotution of such conflicts is
a component in meeting the overall objective.

In what follows a formalism is described for rea-
soning about temporal preferences. This formalism
is based on a generalization of the Temporal Con-
straint Satisfaction Problem (TCSP) framework [4], with
the addition of a mechanism for specifying preferences,
based on the semiring-based soft constraint formalism [1;






20 The result w afrunework for detining reasoning prob-
lers wvolving soft temporal constraets, which are tem-
poral vonsteaants as o TCSPs ugmented by a hinetion
tor ordering the ser of allowed temporal distances ased
o preferenee eriterin,. This resulting formulation, ealled
Temporal Constraint Satisfaction Problems with Pref-
crences (TCSPPs) s introduced in Seetion 2. A sub-
class of TCSPPs i which cach coustraint involves only
asingle interval, called Simple Temporal Problems with
Preterences (STPPs). is also defined.

[n Section 3, we demonstrate the hardness of solving
general TCSPPs and STPPs. and pinpoint one source of
the hardness to preference functions whose “better” val-
ues may form a non-convex set. Restricting the class of
admissible preference functions to those with convex in-
rervals of “bherter”™ values is consequently shown to result
i a tractable framework for solving STPPs. In section
4, an algorithm is introduced, based on a simple general-
ization of the single source shortest path algorithm. for
finding globally best solutions to STPPs with restricted
preference functions. In section 35, the work presented
here is compared to other approaches and results.

2 Temporal constraint problems with
preferences

The proposed framework is based on a simple merger
of two existing formalismis: Temporal Constraint Satis-
faction Problems (TCSPs) [4] and soft constraints based
on semirings [2]'. The result of the merger is a class of
problems called Temporal Constraint Satisfaction prob-
lems with preferences (TCSPPs). In a TCSPP, a soft
temporal constraint is represented by a pair consisting
of a ser of disjoint intervals and a preference function:
(I = {{ay, by]..... [an.bnl}, f). where f: [ - A and 4
is a set of preference values.
Examples of preference functions involving time are:
e min-delay: any function in which smaller distances
is preferred. that is. the delay of the second event
w.r.t. the first one is minimized.

¢ max-delay: assigning higher preference values to
larger distances;

¢ close to k: assign higher values to distances which
are closer to k; in this way, we specify that the dis-
tance between the two events must be as close as
possible to k.

As with classical TCSPs, the interval component of
a soft temporal constraint depicts restrictions either on
the start times of events (in which case they are unary),
or on the distance between pairs of distinct events (in
which case they are binary). For example, a unary con-
straint over a variable .X representing an event, restricts
the domain of X, representing its possible times of oc-
currence; then the interval constraint is shorthand for

!Semiring-based soft constraints is one of a number of for-
malisms for soft constraints, but it has been shown to gener-
alize many of the others, e.g., [3; 8; 9].

fop < o by ovia, - X2 by X binay con-
straint over X and Vorestricts the vadnes of the distanee
V- Lo which case the constriunt ¢ be expressed as
fny <Y =N by, <YV =X 2 b)) Naniform,
hinawry representation of all the constraunts resnlts from
itroducing a variable Xy tor the beginrneny of tune, and
recasting unary constraints as binary conseraints involv-
ing the distance X' = X,

An interesting special case occurs when each con-
straint of a TCSPP contains a single interval. We call
such problems Simple Temporal Problems with Prefer-
ences (STPPs), due 1o the fact that they gzeneralize STPs
[4]. This case is interesting because STPs are polynomi-
ally solvable. while general TCSPs are NP-hard, and the
effect of adding preferences to STPs is not immediarely
obvious. The next section discusses these issues in more
depth.

A solution to a TCSPP is a complete assignment to
all the variables that satisfies the distance constraints.
Each solution has a global preference value, obtained by
combining the local preference values found in the con-
straints. To formalize the process of combining local
preferences into a global preference. and comparing so-
lutions, we impose a semiring structure onto the TCSPP
framework.

A semiring is a tuple {4, +. x. 0.1} such that

e disasetand 0.1 € 4:

¢ —, the additive operation. is conunurative. associa-
tive and 0 is its unit element;

e x, the multiplicative operation. is associative, dis-
tributes over +. 1 is its unit element and 0 is its
absorbing element.

A ¢-semuring is a semiring in which + is idempotent (i.e..
a+a=an& 4) 1isits absorbing element. and x is
commutative.

c-semirings allow for a partial order relation < over 4
to be defined as a <s biff a+b = b. Informally. <y gives
us a wayv to compare tuples of values and constraints,
and a <gs b can be read b is better than a. Moreover:
+ and x are monotone on <g; 0 is its minimum and
1 its maximum; (4, <g) is a complete lattice and, for
alla,b € A, a+ b= lubla,b). If x is idempotent, then
{4, <s) is a complete distributive lattice and x is its glb.
In our main results, we will assume x is idempotent and
also restrict <s to be a total order on the elements of 4.
In this case a + b = max(a,b) and a x b = min(a,b).

Given a choice of semiring with a set of values 4, each
preference function f associated with a soft constraint
(I, f) takes an element from [ and returns an element
of 4. The semiring operations allow for complete solu-
tions to be evaluated in terms of the preference values
assigned locally. More precisely, given a solution ¢ in a
TCSPP with associated semiring (4, +, x, 0,1} let T;; =
(Ii.;, fi,;) be a soft constraint over variables .X;. X; and
(vi, v;) be the projection of ¢t over the values assigned to
variables X; and X (abbreviated as (vi,v;) = t,x, x,)-
Then, the corresponding preference value given by fi;
is fij(v; — vi), where v; — v; € [;;. Finally, where
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eriator ot the semiring, let < F abbreviate vy .. x 1.
Then the glohal preference vadue of ¢, cal(H), s detined
to be cal(ty = <{f e, —eg ] (o)) = bxox, b

The optimal solutions of i« TCSPP are those solutions
which hiwe the best preference value, where “hest™ s
determined by the ordering of the values in the semir-
ing. For example, consider the semiring Sy,;., =
(O] e, men 0, 1), used for tuzzy constraint solving
[8]. The preference value of a solution will be the min-
imuny of all the preference values associated with the
distances selected by this solution in all constraints.
and the best solutions will be those with the maxi-
mal value. Another example is the semiring S.,, =
{fulse true}. v, n, false. true). which is related to solv-
ing classical constraint problems [7]. Here there are
only two preference values: true and false, the prefer-
ence value of a complete solution will be determined by
the logical and of all the local preferences, and the best
solutions will be those with preference value true (since
true is better than false in the order induced by logi-
cal or). This semiring thus recasts the classical TCSP
framework into a TCSPP.

Given a constraint network, it is often useful to find
the corresponding minimal network in which the con-
straints are as explicit as possible. This task is nor-
mally performed by enforcing various levels of local con-
sistency. For TCSPPs. in particular. we can define a
notion of path consistency. Given two soft constraints,
. fi} and (I». f2}. and a semiring S, we define:

o the intersection of two soft constraints T) = ([}, f;}
and Ts = {5, f>). written T} &g T>». as the soft con-
straint ([} = I, f}. where

— [y = I returns the pairwise intersection of in-
tervals in [} and [». and
- fla) = fila) x fa{a) for all a € I} = Iy:

o the composition of two soft constraints Ty = ([;. fi)
and T = ([». f»), written T; ©g Ts. is the soft con-
straint T = ([} 2 [, f). where

- r € I} ® I if and only if there exists a value
t; € I, and t; € I, such that r = ¢; + ¢2, and

- fla) = {fila1) x fo(az) | a = a1 +az.a) €
I,07 € b}

A path-induced constraint on variables .X; and X is
Rfj'”h = BsVk(Ti 9 Tkj), i.e., the result of performing
Zs on each way of composing paths of size two between
t and j. A constraint T;; is path-consistent if and only
if T, C RO, e Ty is at least as strict as RPP". A
TCSPP is path-consistent if and only if all its constraints
are path-consistent.

If the multiplicative operation of the semiring is idem-
potent, then it is easy to prove that applying the op-
eration Ty; := T;; &5 (Tix ©s Tkj) to any constraint
T.; of a TCSPP returns an equivalent TCSPP. More-

over, under the same condition, applying this operation
to a set of constraints returns a final TCSPP which is

alwiws the siune mdependenrly of the ovder of apphica-
tion?. Thus any TCSPP can be transtormed tnto an
equivalent path-cousistent TCSPE by applying the op-
cration L, = 1,, + (T -~ Tiy) toadl constraints T,, un-
til no change oeeurs inany coustraant. This algorithm,
which we call Path, is proven to he polynomial for TC-
SPs (that s, TOSPPs with the semirving 5,00 its com-
plexity is O(n? Yy where nois the mumber of variables
and R is the range of the constraints [4].

General TCSPPs over the semiring S.,, are NP-
complete; thus applying Path is insufficient to solve
them. On the other hand, with STPPs over the same
semiring that cotncide with STPs. applying Path is suf-
ficient to solve them. In the remaining sections. we prove
complexity results for borh general TCSPPs and STPPs,
and also of some subclasses of problems identified by
specific semirings, or preference functions with a certain
shape.

3 Solving TCSPPs and STPPs are
NP-hard

As noted above, solving TCSPs are NP-hard [4]. Since
the addition of preference functions can only make the
problem of finding the optimal solutions more complex.
it is obvious that TCSPPs are NP-hard as well.

We turn our attention to the complexity of genera!
STPPs. We recall that STPs are polynomially solvabls
[4]. thus one might speculate that the same is true for
STPPs. However, it is possible to show that in general.
STPPs fall into rhe class of NP-hard problems.

Theorem 1 (complexity of STPPs) General
STPPs are NP-hard problems.

Proof:

We prove this result by reducing an arbitrary TCSP to
an STPP. Thus. consider any TCSP, and take any of its
constraints, say [ = {[a;.b]..... [an.b,]}. We will now
obtain a corresponding soft temporal constraint contain-
ing just one interval (thus belonging to an STPP). The
semiring that we will use for the resulting STPP is the
classical one: Scop = ({false, true}, V. A, false, true).
Thus the only two allowed preference values are false
and true (or 0 and 1). Assuming that the intervals in [
are ordered such that a; < a;4 for i € {l.....,n = 1}.
the interval of the soft constraint is just [a;.b,]. The
preference function will give value 1 to values in [ and
0 to the others. Thus we have obtained an STPP whose
set of solutions with value 1 (which are the optimal so-
lutions, since 0 <s 1 in the chosen semiring) coincides
with the set of solutions of the given TCSP. Since find-
ing the set of solutions of a TCSP is NP-hard, it follows
that the problem of finding the set of optimal solutions
to an STPP is NP-hard. O

*These properties are trivial extensions of corresponding
properties for classical CSPs, proved in [2].






4 Linecar and Horizontal Preference
Functions

[t 15 casy to mfer from the above proof that the hard-
ness vesult for STPPs dertves eithier from the nature of
the senuring or the shape of the preference functions,
In this seetion, we introdnce two examples of classes of
preference functions which detine tractable subelasses of
STPPs.

When the preference functions of an STPP are lin-
car. and the semiring chosen is such that its two oper-
ations maintain such linearity when applied to the ini-
tial preference functions, it can be seen that the given
STPP can be written as a linear programming problem,
solving which is tractable [3]. Thus, consider any given
TCSPP. For any pair of variables X and Y, take each
interval for the constraint over X and Y. say [a, b}, with
associated linear preference function f. The informa-
tion given by each of such intervals can he represented
by the following inequalities and equation: X — Y < b,
Y-V € —a.and f = ¢;{X =Y)+c;. Then if we choose
the fuzzy semiring ({[0. 1], mar, min,0, 1)), we have the
inequality V° < f for each preference function f in the
problem, and maz(17) as the overall goal. If instead we
choose the semiring {R. +.min, +2¢,0). where we want
to minimize the sum of the preference levels, we have
V= fi+...+...+ fp and min(V). In both cases the
resulting set of formulas constitutes a linear program-
niing problem, solving which is tractable.

Linear preference functions are expressive enough for
many cases, but there are also several situations in which
we need preference functions which are not linear. A
tvpical example arises when we want to state that the
distance hetween two variables must be as close as pos-
sible to a single value. Then. unless this value is one of
the extremes of the interval. the preference function is
convex, but not linear.

Another case is one in which preferred values are as
close as possible to a single distance value, but in which
there are some subintervals where all values have the
same preference. In this case. the preference criteria de-
fine a step function. which is not convex.

A class of function which includes linear, convex, and
also some step functions will be called horizontal func-
tions. Horizontal functions are so-called because if one
draws a horizontal line anywhere in the cartesian plane
defined by the function, the set of X such that f(.X)
is not below the line forms an interval. Figure 1 shows
examples of horizontal and non-horizontal functions.

More formally, a horizontal function is one such that,
for all ¥, the set {.X such that f{X) > Y} forms an in-
terval. It is easy to see that horizontal functions include
linear ones, as well as convex and some step functions.
For example, the close to k criteria cannot be coded into
a linear preference function, but it can be specified by a
horizontal preference function, which could be f(r) =z
forz < kand f(z) =2k -xforzr >k

Horizontal functions are closed under the operations of
intersection and composition defined in Section 2, when

T - J‘ry \
(dy () .
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Figure 1: Exanmples of horizontal functions (a}-(f) and non-
horizontal functions (g)-(i)

certain semirings are chosen. For example, this happens
with the fuzzy semiring, where the intersection performs
the min, and composition performs the maz operation.
The closure proofs follow.

Theorem 2 (closure under intersection) The
property of functions being horizontal is preserved under
intersection. That is. given two horizontal functions
fi and f> which return values over a totally-ordered
semiring, let f be defined as f(a) = fi(a) x f.(a). where
x is the multiplicative operation of the semiring. Then
f is a horizontal function as well.

Proof:  From the definition of horizontal functions.
it suffices to prove that, for any given y. the set
S = {r: f{r) > y} identifies an interval. If S is empty,
then it identifies the empty interval. In the following we
assume S to be not empty.

{r:flr) 2y} ={r: fi{z) x fol2)
= {x: min(fi(x). f»
( x is a lower bound operator since
idempotent)
= {r: filz) 2 yA folx) > y)
={z:z € a1, bi]A 1 € [as. ba]}
(since each of f; and f. is horizontal)
= [maz(ay,a2), min(by. bs)]

y}
) >y}

>
(r)
it is assumed to be

a

Theorem 3 (closure under composition) The
property of functions being horizontal is preserved under
composition. That s, given a totally-ordered semiring
with an idempotent multiplicative operation x and
binary additive operation + (or > over an arbitrary
set of elements). let fi and f, be horizontal functions
which return values over the semiring. Define f as
fla) = 3y cca(f1(b) x fa(c)). Then f is a horizontal
function as well.

Proof: Again, from the definition of horizontal
functions, it suffices to prove that, for any given y,
the set S = {z : f(x) > y} identifies an interval. If S
is empty, then it identifies the empty interval. In the
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= S it e fale)y 2oy
={romax, = (Sl < f2le)) 2y}
{stnce 4+ s an upper bound operitor)
{a filu) < falr) 2y tor some wand o
such that £ = w + v}
{reomin{ filu), f2lvy) 2y for some o and v
such that ¢ = u + v}
{ < is a lower bound operator sinee it is assumed to be
idempotent)
={r fulw) 2y A fale) 2.
for some u + v = r}
= {J: :

wE fay bl Ae g las b,
{since cach of fi and f» is horizontal)
= {J,’ L e [(ll +da. by +b2]}
= [al +a:x. by + bg}

I

for some u + v = r and some a;. b a2 b}

a

These results imply that appplying the Path algorithm
to an STPP with only horizontal preference functions,
and whose underiving semiring contains a multiplicative
operation that is idempotent. will result in a network
whose induced soft constraints also contain horizontal
preference functions. These results will be applied in
the next section.

5 Solving STPPs with Horizontal
Functions is Tractable

We will now prove that STPPs with horizontal prefer-
ence functions and an underlying semiring with an idem-
potent multiplicative operation can be solved tractably.
First. we describe a way of transforming an arbitrary
STPP with horizontal preference functions into a STP.
Given such an STPP and an underlying semiring with 4
the set of preference values. Let y € 4 and ([, f) be a
soft constraint defined on variables .\;..\; in the STPP,
where f is horizontal. Consider the interval defined by
{r:z €A f(z)>y} (because f is horizontal, this set
defines an interval for any choice of y). Let this interval
define a constraint on the same pair .X;, .X;. Performing
this transformation on each soft constraint in the original
STPP results in an STP, which we refer to as STP,.
(Notice that not every choice of y will yield an STP that
is solvable.) Let opt be the highest preference value (in
the ordering induced by the semiring) such that ST P,,;
has a solution. We will now prove that the solutions of
ST P,y are the optimal solutions of the given STPP.

Theorem 4 Consider any STPP with horizontal pref-
erence functions over a totally-ordered semiring with x
idempotent. Take opt as the highest y such that STP,
has a solution. Then the solutions of STP,, are the
optirnal solutions of the STPP.

Proof: First we prove that every solution of ST Pop,
is an optimal solution of STPP. Take any solution of

ST,y s 0 This instantiation o the oviginal
STPP, has vadne val(ty = fiity) < ..~ fults). where
to1s the distanee v, — v for an assignment to the vart-
ables N, e ey =0 Ly vy cand fis the preferenes
function associated with the soft constraint ([, f,), with
v, = v, € [0 Now assiwune tor the purpose of contra-
diction that ¢ 5 not optimal in STPP. That s, there is
another instantiarion ¢ such that eal(#) > ral(t). Since
val(t'y = fL(t) <.« £, (8} by monotonicity of the x,
we can have val(t')y > cal(t) ouly if each of the f,(¢)
is greater than the corvesponding f,(t,). But this means
that we can take the smallest snch value f, (). call it «',
and construce STP, . [t is visy to see that STP), has
at least one solution. #'. therefore opt is not the highest
value of y. contradicring onr assumption.

Next we prove that every optimal solution of the STPP
is a solution of ST P,y Take any t optimal for STPP.
and assume it is not a solution of ST F,,,. This means
that. for some constraint. f(¢,) < opt. Therefore. if we
compute val(t) in STPP. we have that val(t) < opt.
Then take any solution ¢ of ST P, (there are some. by
construction of ST Py, ). If we compute val(t') in STPP,
since x = glb (we assume x idempotent). we have that
val(t') > opt. thus ¢t was not optimal as initially assumed.
c

This result implies that finding an optimal solution
of the given STPP with horizontal preference functions
reduces to a two-step search process consisting of iter-
atively choosing a w. then solving ST P, until STF,,,
is found. Under certain conditions. both phases can be
performed in polynomial time. and hence the entire pro-
cess can be tractable.

The first phase can be conducted naively by trying ev-
ery possible “chop™ point y and checking whether STP,
has a solution. A binary search is also possible. Under
certain conditions, it is possible to see that the number
of chop points is also polynomial. namely:

e if the semiring has a finite number of elements.
which is at most exponential in the number n of vari-
ables of the given STPP, then a polynomial number
of checks is enough using binary search.

e if the semiring has a countably infinite number of
elements, and the preference functions never go to
infinity, then let [ be the highest preference level
given by the functions. If the number of values not
above [ is at most exponential in n, then again we
can find opt in a polynomial number of steps.

The second phase, solving the induced ST P, can be
performed by transforming the graph associated with
this STP into a distance graph, then solving two single-
source shortest path problems on the distance graph 4].
If the problem has a solution, then for each event it is
possible to arbitrarily pick a time within its time bounds,
and find corresponding times for the other events such
that the set of times for all the events satisfy the inter-
val constraints. The complexity of this phase is O(en)
(using the Bellman-Ford algorithm [3]).






The madn eesudt of this discussion s that, while, noe
surprisingly, general TCSPPs ave NP-hard, there are
sth-classes of TCSPP problems which are polynomi-
allv solvables Important sonrees of tractability inelude
the shape of the temporal preference functions, and the
chotee of the nnderlying semirving for construeting and
cotparing preferenee values.

6 Related work

The merging of temporal CSPs with soft constraints was
fist proposed in [10], where it was used within a frame-
work for reasoning about recurrving events. The frame-
work proposed in {11] contains a representation of local
preferences that is similar to the one proposed here. but
uses local search, rather than constraint propagation. as
the primary mechanism for finding good complete so-
lutions. and no guarantee of optimality can be demon-
strated.

Finally. the property that characterizes horizontal
preference functions, viz., the convexity of the inter-
val above any horizontal line drawn in the Cartesian
plane around the function. is reminiscent of the notion
of row-convexity, used in characterizing constraint net-
works whose global consistency. and hence tractability
in solving. can be determined by applying local (path)
consistency [12]. There are a number of wavs to view
rhis connection. One way is to note that the row con-
vex condition for the 0-1 matrix representation of binary
constraints prohibits a row in which a sequence of ones
is interrupted by one or more zeros. Replacing the ones
in the matrix by the preference value for that pair of do-
main elements. one can generalize the definition of row
convexity to prohibit rows in which the preference values
decrease then increase. This is the intuitive idea under-
lving the behavior of horizontal preference functions.

7 Summary

We have defined a formalism for characterizing prob-
lems involving temporal constraints over the distances
and duration of certain events, as well as preferences
over such distances. This formalism merges two existing
frameworks: temporal CSPs and soft constraints, and
inherits from them their generality, and also allows for
a rigorous examination of computational properties that
result from the merger.
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